Papers
Topics
Authors
Recent
2000 character limit reached

Explainable AI in Usable Privacy and Security: Challenges and Opportunities (2504.12931v1)

Published 17 Apr 2025 in cs.HC

Abstract: LLMs are increasingly being used for automated evaluations and explaining them. However, concerns about explanation quality, consistency, and hallucinations remain open research challenges, particularly in high-stakes contexts like privacy and security, where user trust and decision-making are at stake. In this paper, we investigate these issues in the context of PRISMe, an interactive privacy policy assessment tool that leverages LLMs to evaluate and explain website privacy policies. Based on a prior user study with 22 participants, we identify key concerns regarding LLM judgment transparency, consistency, and faithfulness, as well as variations in user preferences for explanation detail and engagement. We discuss potential strategies to mitigate these concerns, including structured evaluation criteria, uncertainty estimation, and retrieval-augmented generation (RAG). We identify a need for adaptive explanation strategies tailored to different user profiles for LLM-as-a-judge. Our goal is to showcase the application area of usable privacy and security to be promising for Human-Centered Explainable AI (HCXAI) to make an impact.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.