Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Generative Deep Learning Framework for Inverse Design of Fuels (2504.12075v1)

Published 16 Apr 2025 in cs.LG and physics.chem-ph

Abstract: In the present work, a generative deep learning framework combining a Co-optimized Variational Autoencoder (Co-VAE) architecture with quantitative structure-property relationship (QSPR) techniques is developed to enable accelerated inverse design of fuels. The Co-VAE integrates a property prediction component coupled with the VAE latent space, enhancing molecular reconstruction and accurate estimation of Research Octane Number (RON) (chosen as the fuel property of interest). A subset of the GDB-13 database, enriched with a curated RON database, is used for model training. Hyperparameter tuning is further utilized to optimize the balance among reconstruction fidelity, chemical validity, and RON prediction. An independent regression model is then used to refine RON prediction, while a differential evolution algorithm is employed to efficiently navigate the VAE latent space and identify promising fuel molecule candidates with high RON. This methodology addresses the limitations of traditional fuel screening approaches by capturing complex structure-property relationships within a comprehensive latent representation. The generative model provides a flexible tool for systematically exploring vast chemical spaces, paving the way for discovering fuels with superior anti-knock properties. The demonstrated approach can be readily extended to incorporate additional fuel properties and synthesizability criteria to enhance applicability and reliability for de novo design of new fuels.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube