Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning from the Past: Adaptive Parallelism Tuning for Stream Processing Systems (2504.12074v1)

Published 16 Apr 2025 in cs.DC and cs.DB

Abstract: Distributed stream processing systems rely on the dataflow model to define and execute streaming jobs, organizing computations as Directed Acyclic Graphs (DAGs) of operators. Adjusting the parallelism of these operators is crucial to handling fluctuating workloads efficiently while balancing resource usage and processing performance. However, existing methods often fail to effectively utilize execution histories or fully exploit DAG structures, limiting their ability to identity bottlenecks and determine the optimal parallelism. In this paper, we propose StreamTune, a novel approach for adaptive paralelism tuning in stream processing systems. StreamTune incorporates a pre-training and fine-tuning framework that leverages global knowledge from historical execution data for job-specific parallelism tuning. In the pre-training phase, Stream Tune clusters the historical data with Graph Edit Distance and pre-trains a Graph Neural Networkbased encoder per cluster to capture the correlation between the operator parallelism, DAG structures, and the identified operator-level bottlenecks. In the online tuning phase, StreamTune iteratively refines operator parallelism recommendations using an operator-level bottleneck prediction model enforced with a monotonic constraint, which aligns with the observed system performance behavior. Evaluation results demonstrate that StreamTune reduces reconfigurations by up to 29.6% and parallelism degrees by up to 30.8% in Apache Flink under a synthetic workload. In Timely Dataflow, StreamTune achieves up to an 83.3% reduction in parallelism degrees while maintaining comparable processing performance under the Nexmark benchmark, when compared to the state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: