Papers
Topics
Authors
Recent
2000 character limit reached

Non-uniform Point Cloud Upsampling via Local Manifold Distribution (2504.11701v1)

Published 16 Apr 2025 in cs.CV and math.DG

Abstract: Existing learning-based point cloud upsampling methods often overlook the intrinsic data distribution charac?teristics of point clouds, leading to suboptimal results when handling sparse and non-uniform point clouds. We propose a novel approach to point cloud upsampling by imposing constraints from the perspective of manifold distributions. Leveraging the strong fitting capability of Gaussian functions, our method employs a network to iteratively optimize Gaussian components and their weights, accurately representing local manifolds. By utilizing the probabilistic distribution properties of Gaussian functions, we construct a unified statistical manifold to impose distribution constraints on the point cloud. Experimental results on multiple datasets demonstrate that our method generates higher-quality and more uniformly distributed dense point clouds when processing sparse and non-uniform inputs, outperforming state-of-the-art point cloud upsampling techniques.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.