Papers
Topics
Authors
Recent
2000 character limit reached

Enhanced Small Target Detection via Multi-Modal Fusion and Attention Mechanisms: A YOLOv5 Approach (2504.11262v1)

Published 15 Apr 2025 in cs.CV

Abstract: With the rapid development of information technology, modern warfare increasingly relies on intelligence, making small target detection critical in military applications. The growing demand for efficient, real-time detection has created challenges in identifying small targets in complex environments due to interference. To address this, we propose a small target detection method based on multi-modal image fusion and attention mechanisms. This method leverages YOLOv5, integrating infrared and visible light data along with a convolutional attention module to enhance detection performance. The process begins with multi-modal dataset registration using feature point matching, ensuring accurate network training. By combining infrared and visible light features with attention mechanisms, the model improves detection accuracy and robustness. Experimental results on anti-UAV and Visdrone datasets demonstrate the effectiveness and practicality of our approach, achieving superior detection results for small and dim targets.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.