Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

AutoRAN: Automated and Zero-Touch Open RAN Systems (2504.11233v2)

Published 15 Apr 2025 in cs.NI

Abstract: [...] This paper presents AutoRAN, an automated, intent-driven framework for zero-touch provisioning of open, programmable cellular networks. Leveraging cloud-native principles, AutoRAN employs virtualization, declarative infrastructure-as-code templates, and disaggregated micro-services to abstract physical resources and protocol stacks. Its orchestration engine integrates LLMs to translate high-level intents into machine-readable configurations, enabling closed-loop control via telemetry-driven observability. Implemented on a multi-architecture OpenShift cluster with heterogeneous compute (x86/ARM CPUs, NVIDIA GPUs) and multi-vendor Radio Access Network (RAN) hardware (Foxconn, NI), AutoRAN automates deployment of O-RAN-compliant stacks-including OpenAirInterface, NVIDIA ARC RAN, Open5GS core, and O-RAN Software Community (OSC) RIC components-using CI/CD pipelines. Experimental results demonstrate that AutoRAN is capable of deploying an end-to-end Private 5G network in less than 60 seconds with 1.6 Gbps throughput, validating its ability to streamline configuration, accelerate testing, and reduce manual intervention with similar performance than non cloud-based implementations. With its novel LLM-assisted intent translation mechanism, and performance-optimized automation workflow for multi-vendor environments, AutoRAN has the potential of advancing the robustness of next-generation cellular supply chains through reproducible, intent-based provisioning across public and private deployments.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube