Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

ALLSTaR: Automated LLM-Driven Scheduler Generation and Testing for Intent-Based RAN (2505.18389v3)

Published 23 May 2025 in cs.NI

Abstract: The evolution toward open, programmable O-RAN and AI-RAN 6G networks creates unprecedented opportunities for Intent-Based Networking (IBN) to dynamically optimize RAN[...]. However, applying IBN effectively to the RAN scheduler [...] remains a significant challenge. Current approaches predominantly rely on coarse-grained network slicing, lacking the granularity for dynamic adaptation to individual user conditions and traffic patterns. Despite the existence of a vast body of scheduling algorithms [...], their practical utilization is hindered by implementation heterogeneity, insufficient systematic evaluation in production environments, and the complexity of developing high-performance scheduler implementations.[...] To address these limitations, we propose ALLSTaR (Automated LLM-driven Scheduler generation and Testing for intent-based RAN), a novel framework leveraging LLMs for automated, intent-driven scheduler design, implementation, and evaluation. ALLSTaR interprets NL intents, automatically generates functional scheduler code from the research literature using OCR and LLMs, and intelligently matches operator intents to the most suitable scheduler(s). Our implementation deploys these schedulers as O-RAN dApps, enabling on-the-fly deployment and testing on a production-grade, 5G-compliant testbed. This approach has enabled the largest-scale OTA experimental comparison of 18 scheduling algorithms automatically synthesized from the academic literature. The resulting performance profiles serve as the input for our Intent-Based Scheduling (IBS) framework, which dynamically selects and deploys appropriate schedulers that optimally satisfy operator intents. We validate our approach through multiple use cases unattainable with current slicing-based optimization techniques, demonstrating fine-grained control based on buffer status, physical layer conditions, and heterogeneous traffic types

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

HackerNews

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube