Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Xpose: Bi-directional Engineering for Hidden Query Extraction (2504.10898v1)

Published 15 Apr 2025 in cs.DB and cs.AI

Abstract: Query reverse engineering (QRE) aims to synthesize a SQL query to connect a given database and result instance. A recent variation of QRE is where an additional input, an opaque executable containing a ground-truth query, is provided, and the goal is to non-invasively extract this specific query through only input-output examples. This variant, called Hidden Query Extraction (HQE), has a spectrum of industrial use-cases including query recovery, database security, and vendor migration. The reverse engineering (RE) tools developed for HQE, which are based on database mutation and generation techniques, can only extract flat queries with key-based equi joins and conjunctive arithmetic filter predicates, making them limited wrt both query structure and query operators. In this paper, we present Xpose, a HQE solution that elevates the extraction scope to realistic complex queries, such as those found in the TPCH benchmark. A two-pronged approach is taken: (1) The existing RE scope is substantially extended to incorporate union connectors, algebraic filter predicates, and disjunctions for both values and predicates. (2) The predictive power of LLMs is leveraged to convert business descriptions of the opaque application into extraction guidance, representing ``forward engineering" (FE). The FE module recognizes common constructs, such as nesting of sub-queries, outer joins, and scalar functions. In essence, FE establishes the broad query contours, while RE fleshes out the fine-grained details. We have evaluated Xpose on (a) E-TPCH, a query suite comprising the complete TPCH benchmark extended with queries featuring unions, diverse join types, and sub-queries; and (b) the real-world STACK benchmark. The experimental results demonstrate that its bi-directional engineering approach accurately extracts these complex queries, representing a significant step forward with regard to HQE coverage.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.