Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Achieving Optimal Tissue Repair Through MARL with Reward Shaping and Curriculum Learning (2504.10677v1)

Published 14 Apr 2025 in cs.LG, cs.AI, and cs.MA

Abstract: In this paper, we present a multi-agent reinforcement learning (MARL) framework for optimizing tissue repair processes using engineered biological agents. Our approach integrates: (1) stochastic reaction-diffusion systems modeling molecular signaling, (2) neural-like electrochemical communication with Hebbian plasticity, and (3) a biologically informed reward function combining chemical gradient tracking, neural synchronization, and robust penalties. A curriculum learning scheme guides the agent through progressively complex repair scenarios. In silico experiments demonstrate emergent repair strategies, including dynamic secretion control and spatial coordination.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: