Papers
Topics
Authors
Recent
2000 character limit reached

Diversity-Fair Online Selection (2504.10389v2)

Published 14 Apr 2025 in econ.TH, cs.DS, and math.OC

Abstract: Online selection problems frequently arise in applications such as crowdsourcing and employee recruitment. Existing research typically focuses on candidates with a single attribute. However, crowdsourcing tasks often require contributions from individuals across various demographics. Further motivated by the dynamic nature of crowdsourcing and hiring, we study the diversity-fair online selection problem, in which a recruiter must make real-time decisions to foster workforce diversity across many dimensions. We propose two scenarios for this problem. The fixed-capacity scenario, suited for short-term hiring for crowdsourced workers, provides the recruiter with a fixed capacity to fill temporary job vacancies. In contrast, in the unknown-capacity scenario, recruiters optimize diversity across recruitment seasons with increasing capacities, reflecting that the firm honors diversity consideration in a long-term employee acquisition strategy. By modeling the diversity over $d$ dimensions as a max-min fairness objective, we show that no policy can surpass a competitive ratio of $O(1/d{1/3})$ for either scenario, indicating that any achievable result inevitably decays by some polynomial factor in $d$. To this end, we develop bilevel hierarchical randomized policies that ensure compliance with the capacity constraint. For the fixed-capacity scenario, leveraging marginal information about the arriving population allows us to achieve a competitive ratio of $1/(4\sqrt{d} \lceil \log_2 d \rceil)$. For the unknown-capacity scenario, we establish a competitive ratio of $\Omega(1/d{3/4})$ under mild boundedness conditions. In both bilevel hierarchical policies, the higher level determines ex-ante selection probabilities and then informs the lower level's randomized selection that ensures no loss in efficiency. Both policies prioritize core diversity and then adjust for underrepresented dimensions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: