Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lorentzian Gromov-Hausdorff convergence and pre-compactness (2504.10380v2)

Published 14 Apr 2025 in math.DG, gr-qc, math-ph, math.MG, and math.MP

Abstract: The goal of the paper is to introduce a convergence `a la Gromov-Hausdorff for Lorentzian spaces, building on $\epsilon$-nets consisting of causal diamonds and relying only on the time separation function. This yields a geometric notion of convergence, which can be applied to synthetic Lorentzian spaces (Lorentzian pre-length spaces) or smooth spacetimes. Among the main results, we prove a Lorentzian counterpart of the celebrated Gromov's pre-compactness theorem for metric spaces, where controlled covers by balls are replaced by controlled covers by diamonds. This yields a geometric pre-compactness result for classes of globally hyperbolic spacetimes, satisfying a uniform doubling property on Cauchy hypersurfaces and a suitable control on the causality. The final part of the paper establishes several applications: we show that Chru\'sciel-Grant approximations are an instance of the Lorentzian Gromov-Hausdorff convergence here introduced, we prove that timelike sectional curvature bounds are stable under such a convergence, we introduce timelike blow-up tangents and discuss connections with the main conjecture of causal set theory.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: