Papers
Topics
Authors
Recent
2000 character limit reached

Truncated Matrix Completion - An Empirical Study (2504.09873v1)

Published 14 Apr 2025 in cs.LG, cs.AI, cs.NA, math.NA, and stat.ML

Abstract: Low-rank Matrix Completion (LRMC) describes the problem where we wish to recover missing entries of partially observed low-rank matrix. Most existing matrix completion work deals with sampling procedures that are independent of the underlying data values. While this assumption allows the derivation of nice theoretical guarantees, it seldom holds in real-world applications. In this paper, we consider various settings where the sampling mask is dependent on the underlying data values, motivated by applications in sensing, sequential decision-making, and recommender systems. Through a series of experiments, we study and compare the performance of various LRMC algorithms that were originally successful for data-independent sampling patterns.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.