CKMImageNet: A Dataset for AI-Based Channel Knowledge Map Towards Environment-Aware Communication and Sensing (2504.09849v1)
Abstract: With the increasing demand for real-time channel state information (CSI) in sixth-generation (6G) mobile communication networks, channel knowledge map (CKM) emerges as a promising technique, offering a site-specific database that enables environment-awareness and significantly enhances communication and sensing performance by leveraging a priori wireless channel knowledge. However, efficient construction and utilization of CKMs require high-quality, massive, and location-specific channel knowledge data that accurately reflects the real-world environments. Inspired by the great success of ImageNet dataset in advancing computer vision and image understanding in AI community, we introduce CKMImageNet, a dataset developed to bridge AI and environment-aware wireless communications and sensing by integrating location-specific channel knowledge data, high-fidelity environmental maps, and their visual representations. CKMImageNet supports a wide range of AI-driven approaches for CKM construction with spatially consistent and location-specific channel knowledge data, including both supervised and unsupervised, as well as discriminative and generative AI methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.