Papers
Topics
Authors
Recent
2000 character limit reached

A Tale of Two Learning Algorithms: Multiple Stream Random Walk and Asynchronous Gossip (2504.09792v1)

Published 14 Apr 2025 in cs.LG

Abstract: Although gossip and random walk-based learning algorithms are widely known for decentralized learning, there has been limited theoretical and experimental analysis to understand their relative performance for different graph topologies and data heterogeneity. We first design and analyze a random walk-based learning algorithm with multiple streams (walks), which we name asynchronous "Multi-Walk (MW)". We provide a convergence analysis for MW w.r.t iteration (computation), wall-clock time, and communication. We also present a convergence analysis for "Asynchronous Gossip", noting the lack of a comprehensive analysis of its convergence, along with the computation and communication overhead, in the literature. Our results show that MW has better convergence in terms of iterations as compared to Asynchronous Gossip in graphs with large diameters (e.g., cycles), while its relative performance, as compared to Asynchronous Gossip, depends on the number of walks and the data heterogeneity in graphs with small diameters (e.g., complete graphs). In wall-clock time analysis, we observe a linear speed-up with the number of walks and nodes in MW and Asynchronous Gossip, respectively. Finally, we show that MW outperforms Asynchronous Gossip in communication overhead, except in small-diameter topologies with extreme data heterogeneity. These results highlight the effectiveness of each algorithm in different graph topologies and data heterogeneity. Our codes are available for reproducibility.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.