Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 347 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Scalable Motion In-betweening via Diffusion and Physics-Based Character Adaptation (2504.09413v1)

Published 13 Apr 2025 in cs.GR

Abstract: We propose a two-stage framework for motion in-betweening that combines diffusion-based motion generation with physics-based character adaptation. In Stage 1, a character-agnostic diffusion model synthesizes transitions from sparse keyframes on a canonical skeleton, allowing the same model to generalize across diverse characters. In Stage 2, a reinforcement learning-based controller adapts the canonical motion to the target character's morphology and dynamics, correcting artifacts and enhancing stylistic realism. This design supports scalable motion generation across characters with diverse skeletons without retraining the entire model. Experiments on standard benchmarks and stylized characters demonstrate that our method produces physically plausible, style-consistent motions under sparse and long-range constraints.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.