Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian shrinkage priors subject to linear constraints (2504.09052v1)

Published 12 Apr 2025 in stat.ME, math.ST, and stat.TH

Abstract: In Bayesian regression models with categorical predictors, constraints are needed to ensure identifiability when using all $K$ levels of a factor. The sum-to-zero constraint is particularly useful as it allows coefficients to represent deviations from the population average. However, implementing such constraints in Bayesian settings is challenging, especially when assigning appropriate priors that respect these constraints and general principles. Here we develop a multivariate normal prior family that satisfies arbitrary linear constraints while preserving the local adaptivity properties of shrinkage priors, with an efficient implementation algorithm for probabilistic programming languages. Our approach applies broadly to various shrinkage frameworks including Bayesian Ridge, horseshoe priors and their variants, demonstrating excellent performance in simulation studies. The covariance structure we derive generalizes beyond regression models to any Bayesian analysis requiring linear constraints on parameters, providing practitioners with a principled approach to parameter identification while maintaining proper uncertainty quantification and interpretability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: