Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Should you use LLMs to simulate opinions? Quality checks for early-stage deliberation (2504.08954v2)

Published 11 Apr 2025 in cs.CY and cs.HC

Abstract: The emergent capabilities of LLMs have sparked interest in assessing their ability to simulate human opinions in a variety of contexts, potentially serving as surrogates for human subjects in opinion surveys. However, previous evaluations of this capability have depended heavily on costly, domain-specific human survey data, and mixed empirical results about LLM effectiveness create uncertainty for managers about whether investing in this technology is justified in early-stage research. To address these challenges, we introduce a series of quality checks to support early-stage deliberation about the viability of using LLMs for simulating human opinions. These checks emphasize logical constraints, model stability, and alignment with stakeholder expectations of model outputs, thereby reducing dependence on human-generated data in the initial stages of evaluation. We demonstrate the usefulness of the proposed quality control tests in the context of AI-assisted content moderation, an application that both advocates and critics of LLMs' capabilities to simulate human opinion see as a desirable potential use case. None of the tested models passed all quality control checks, revealing several failure modes. We conclude by discussing implications of these failure modes and recommend how organizations can utilize our proposed tests for prompt engineering and in their risk management practices when considering the use of LLMs for opinion simulation. We make our crowdsourced dataset of claims with human and LLM annotations publicly available for future research.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube