Papers
Topics
Authors
Recent
2000 character limit reached

Integrated ensemble of BERT- and features-based models for authorship attribution in Japanese literary works (2504.08527v1)

Published 11 Apr 2025 in cs.CL

Abstract: Traditionally, authorship attribution (AA) tasks relied on statistical data analysis and classification based on stylistic features extracted from texts. In recent years, pre-trained LLMs (PLMs) have attracted significant attention in text classification tasks. However, although they demonstrate excellent performance on large-scale short-text datasets, their effectiveness remains under-explored for small samples, particularly in AA tasks. Additionally, a key challenge is how to effectively leverage PLMs in conjunction with traditional feature-based methods to advance AA research. In this study, we aimed to significantly improve performance using an integrated integrative ensemble of traditional feature-based and modern PLM-based methods on an AA task in a small sample. For the experiment, we used two corpora of literary works to classify 10 authors each. The results indicate that BERT is effective, even for small-sample AA tasks. Both BERT-based and classifier ensembles outperformed their respective stand-alone models, and the integrated ensemble approach further improved the scores significantly. For the corpus that was not included in the pre-training data, the integrated ensemble improved the F1 score by approximately 14 points, compared to the best-performing single model. Our methodology provides a viable solution for the efficient use of the ever-expanding array of data processing tools in the foreseeable future.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.