Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

High-dimensional Gaussian and bootstrap approximations for robust means (2504.08435v2)

Published 11 Apr 2025 in math.ST and stat.TH

Abstract: Recent years have witnessed much progress on Gaussian and bootstrap approximations to the distribution of max-type statistics of sums of independent random vectors with dimension $d$ large relative to the sample size $n$. However, for any number of moments $m>2$ that the summands may possess, there exist distributions such that these approximations break down if $d$ grows faster than $n{\frac{m}{2}-1}$. In this paper, we establish Gaussian and bootstrap approximations to the distributions of winsorized and trimmed means that allow $d$ to grow at an exponential rate in $n$ as long as $m>2$ moments exist. The approximations remain valid under some amount of adversarial contamination. Our implementations of the winsorized and trimmed means are fully data-driven and do not depend on any unknown population quantities. As a consequence, the performance of the approximation guarantees ``adapts'' to $m$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: