Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fairness is in the details : Face Dataset Auditing (2504.08396v1)

Published 11 Apr 2025 in stat.AP

Abstract: Auditing involves verifying the proper implementation of a given policy. As such, auditing is essential for ensuring compliance with the principles of fairness, equity, and transparency mandated by the European Union's AI Act. Moreover, biases present during the training phase of a learning system can persist in the modeling process and result in discrimination against certain subgroups of individuals when the model is deployed in production. Assessing bias in image datasets is a particularly complex task, as it first requires a feature extraction step, then to consider the extraction's quality in the statistical tests. This paper proposes a robust methodology for auditing image datasets based on so-called "sensitive" features, such as gender, age, and ethnicity. The proposed methodology consists of both a feature extraction phase and a statistical analysis phase. The first phase introduces a novel convolutional neural network (CNN) architecture specifically designed for extracting sensitive features with a limited number of manual annotations. The second phase compares the distributions of sensitive features across subgroups using a novel statistical test that accounts for the imprecision of the feature extraction model. Our pipeline constitutes a comprehensive and fully automated methodology for dataset auditing. We illustrate our approach using two manually annotated datasets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.