Papers
Topics
Authors
Recent
2000 character limit reached

Localization for Random Schrödinger Operators Defined by Block Factors (2504.08153v1)

Published 10 Apr 2025 in math.SP, math-ph, math.DS, and math.MP

Abstract: We consider discrete one-dimensional Schr\"odinger operators with random potentials obtained via a block code applied to an i.i.d. sequence of random variables. It is shown that, almost surely, these operators exhibit spectral and dynamical localization, the latter away from a finite set of exceptional energies. We make no assumptions beyond non-triviality, neither on the regularity of the underlying random variables, nor on the linearity, the monotonicity, or even the continuity of the block code. Central to our proof is a reduction to the non-stationary Anderson model via Fubini.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 10 likes about this paper.