Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

STEI-PCN: an efficient pure convolutional network for traffic prediction via spatial-temporal encoding and inferring (2504.08061v1)

Published 10 Apr 2025 in cs.CV and cs.AI

Abstract: Traffic data exhibits complex temporal, spatial, and spatial-temporal correlations. Most of models use either independent modules to separately extract temporal and spatial correlations or joint modules to synchronously extract them, without considering the spatial-temporal correlations. Moreover, models that consider joint spatial-temporal correlations (temporal, spatial, and spatial-temporal correlations) often encounter significant challenges in accuracy and computational efficiency which prevent such models from demonstrating the expected advantages of a joint spatial-temporal correlations architecture. To address these issues, this paper proposes an efficient pure convolutional network for traffic prediction via spatial-temporal encoding and inferring (STEI-PCN). The model introduces and designs a dynamic adjacency matrix inferring module based on absolute spatial and temporal coordinates, as well as relative spatial and temporal distance encoding, using a graph convolutional network combined with gating mechanism to capture local synchronous joint spatial-temporal correlations. Additionally, three layers of temporal dilated causal convolutional network are used to capture long-range temporal correlations. Finally, through multi-view collaborative prediction module, the model integrates the gated-activated original, local synchronous joint spatial-temporal, and long-range temporal features to achieve comprehensive prediction. This study conducts extensive experiments on flow datasets (PeMS03/04/07/08) and speed dataset (PeMS-Bay), covering multiple prediction horizons. The results show that STEI-PCN demonstrates competitive computational efficiency in both training and inference speeds, and achieves superior or slightly inferior to state-of-the-art (SOTA) models on most evaluation metrics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets