Papers
Topics
Authors
Recent
Search
2000 character limit reached

Can Reasoning LLMs Enhance Clinical Document Classification?

Published 10 Apr 2025 in cs.CL and cs.AI | (2504.08040v2)

Abstract: Clinical document classification is essential for converting unstructured medical texts into standardised ICD-10 diagnoses, yet it faces challenges due to complex medical language, privacy constraints, and limited annotated datasets. LLMs offer promising improvements in accuracy and efficiency for this task. This study evaluates the performance and consistency of eight LLMs; four reasoning (Qwen QWQ, Deepseek Reasoner, GPT o3 Mini, Gemini 2.0 Flash Thinking) and four non-reasoning (Llama 3.3, GPT 4o Mini, Gemini 2.0 Flash, Deepseek Chat); in classifying clinical discharge summaries using the MIMIC-IV dataset. Using cTAKES to structure clinical narratives, models were assessed across three experimental runs, with majority voting determining final predictions. Results showed that reasoning models outperformed non-reasoning models in accuracy (71% vs 68%) and F1 score (67% vs 60%), with Gemini 2.0 Flash Thinking achieving the highest accuracy (75%) and F1 score (76%). However, non-reasoning models demonstrated greater stability (91% vs 84% consistency). Performance varied across ICD-10 codes, with reasoning models excelling in complex cases but struggling with abstract categories. Findings indicate a trade-off between accuracy and consistency, suggesting that a hybrid approach could optimise clinical coding. Future research should explore multi-label classification, domain-specific fine-tuning, and ensemble methods to enhance model reliability in real-world applications.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.