Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Utility Inspired Generalizations of TOPSIS (2504.08014v1)

Published 10 Apr 2025 in cs.AI

Abstract: TOPSIS, a popular method for ranking alternatives is based on aggregated distances to ideal and anti-ideal points. As such, it was considered to be essentially different from widely popular and acknowledged utility-based methods', which build rankings from weight-averaged utility values. Nonetheless, TOPSIS has recently been shown to be a natural generalization of theseutility-based methods' on the grounds that the distances it uses can be decomposed into so called weight-scaled means (WM) and weight-scaled standard deviations (WSD) of utilities. However, the influence that these two components exert on the final ranking cannot be in any way influenced in the standard TOPSIS. This is why, building on our previous results, in this paper we put forward modifications that make TOPSIS aggregations responsive to WM and WSD, achieving some amount of well interpretable control over how the rankings are influenced by WM and WSD. The modifications constitute a natural generalization of the standard TOPSIS method because, thanks to them, the generalized TOPSIS may turn into the original TOPSIS or, otherwise, following the decision maker's preferences, may trade off WM for WSD or WSD for WM. In the latter case, TOPSIS gradually reduces to a regular `utility-based method'. All in all, we believe that the proposed generalizations constitute an interesting practical tool for influencing the ranking by controlled application of a new form of decision maker's preferences.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube