Papers
Topics
Authors
Recent
2000 character limit reached

Comparative analysis of Realistic EMF Exposure Estimation from Low Density Sensor Network by Finite & Infinite Neural Networks (2504.07990v1)

Published 7 Apr 2025 in eess.SP, cs.AI, and cs.LG

Abstract: Understanding the spatial and temporal patterns of environmental exposure to radio-frequency electromagnetic fields (RF-EMF) is essential for conducting risk assessments. These assessments aim to explore potential connections between RF-EMF exposure and its effects on human health, as well as on wildlife and plant life. Existing research has used different machine learning tools for EMF exposure estimation; however, a comparative analysis of these techniques is required to better understand their performance for real-world datasets. In this work, we present both finite and infinite-width convolutional network-based methods to estimate and assess EMF exposure levels from 70 real-world sensors in Lille, France. A comparative analysis has been conducted to analyze the performance of the methods' execution time and estimation accuracy. To improve estimation accuracy for higher-resolution grids, we utilized a preconditioned gradient descent method for kernel estimation. Root Mean Square Error (RMSE) is used as the evaluation criterion for comparing the performance of these deep learning models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.