MuSaRoNews: A Multidomain, Multimodal Satire Dataset from Romanian News Articles
Abstract: Satire and fake news can both contribute to the spread of false information, even though both have different purposes (one if for amusement, the other is to misinform). However, it is not enough to rely purely on text to detect the incongruity between the surface meaning and the actual meaning of the news articles, and, often, other sources of information (e.g., visual) provide an important clue for satire detection. This work introduces a multimodal corpus for satire detection in Romanian news articles named MuSaRoNews. Specifically, we gathered 117,834 public news articles from real and satirical news sources, composing the first multimodal corpus for satire detection in the Romanian language. We conducted experiments and showed that the use of both modalities improves performance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.