Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing Large Language Models through Neuro-Symbolic Integration and Ontological Reasoning (2504.07640v1)

Published 10 Apr 2025 in cs.AI

Abstract: LLMs demonstrate impressive capabilities in natural language processing but suffer from inaccuracies and logical inconsistencies known as hallucinations. This compromises their reliability, especially in domains requiring factual accuracy. We propose a neuro-symbolic approach integrating symbolic ontological reasoning and machine learning methods to enhance the consistency and reliability of LLM outputs. Our workflow utilizes OWL ontologies, a symbolic reasoner (e.g., HermiT) for consistency checking, and a lightweight machine learning model (logistic regression) for mapping natural language statements into logical forms compatible with the ontology. When inconsistencies between LLM outputs and the ontology are detected, the system generates explanatory feedback to guide the LLM towards a corrected, logically coherent response in an iterative refinement loop. We present a working Python prototype demonstrating this pipeline. Experimental results in a defined domain suggest significant improvements in semantic coherence and factual accuracy of LLM outputs, showcasing the potential of combining LLM fluency with the rigor of formal semantics.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.