Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Decentralizing AI Memory: SHIMI, a Semantic Hierarchical Memory Index for Scalable Agent Reasoning (2504.06135v1)

Published 8 Apr 2025 in cs.AI and cs.MA

Abstract: Retrieval-Augmented Generation (RAG) and vector-based search have become foundational tools for memory in AI systems, yet they struggle with abstraction, scalability, and semantic precision - especially in decentralized environments. We present SHIMI (Semantic Hierarchical Memory Index), a unified architecture that models knowledge as a dynamically structured hierarchy of concepts, enabling agents to retrieve information based on meaning rather than surface similarity. SHIMI organizes memory into layered semantic nodes and supports top-down traversal from abstract intent to specific entities, offering more precise and explainable retrieval. Critically, SHIMI is natively designed for decentralized ecosystems, where agents maintain local memory trees and synchronize them asynchronously across networks. We introduce a lightweight sync protocol that leverages Merkle-DAG summaries, Bloom filters, and CRDT-style conflict resolution to enable partial synchronization with minimal overhead. Through benchmark experiments and use cases involving decentralized agent collaboration, we demonstrate SHIMI's advantages in retrieval accuracy, semantic fidelity, and scalability - positioning it as a core infrastructure layer for decentralized cognitive systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.