Papers
Topics
Authors
Recent
2000 character limit reached

An Adaptive Algorithm for Bilevel Optimization on Riemannian Manifolds (2504.06042v2)

Published 8 Apr 2025 in math.OC

Abstract: Existing methods for solving Riemannian bilevel optimization (RBO) problems require prior knowledge of the problem's first- and second-order information and curvature parameter of the Riemannian manifold to determine step sizes, which poses practical limitations when these parameters are unknown or computationally infeasible to obtain. In this paper, we introduce the Adaptive Riemannian Hypergradient Descent (AdaRHD) algorithm for solving RBO problems. To our knowledge, AdaRHD is the first method to incorporate a fully adaptive step size strategy that eliminates the need for problem-specific parameters in RBO problem resolution. We prove that AdaRHD achieves an $\mathcal{O}(1/\epsilon)$ iteration complexity for finding an $\epsilon$-stationary point, thus matching the complexity of existing non-adaptive methods. Furthermore, we demonstrate that substituting exponential mappings with retraction mappings maintains the same complexity bound. Experiments demonstrate that AdaRHD achieves comparable performance to existing non-adaptive approaches while exhibiting greater robustness.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.