Papers
Topics
Authors
Recent
2000 character limit reached

InstructMPC: A Human-LLM-in-the-Loop Framework for Context-Aware Control

Published 8 Apr 2025 in eess.SY and cs.SY | (2504.05946v2)

Abstract: Model Predictive Control (MPC) is a powerful control strategy widely utilized in domains like energy management, building control, and autonomous systems. However, its effectiveness in real-world settings is challenged by the need to incorporate context-specific predictions and expert instructions, which traditional MPC often neglects. We propose InstructMPC, a novel framework that addresses this gap by integrating real-time human instructions through a LLM to produce context-aware predictions for MPC. Our method employs a Language-to-Distribution (L2D) module to translate contextual information into predictive disturbance trajectories, which are then incorporated into the MPC optimization. Unlike existing context-aware and language-based MPC models, InstructMPC enables dynamic human-LLM interaction and fine-tunes the L2D module in a closed loop with theoretical performance guarantees, achieving a regret bound of $O(\sqrt{T\log T})$ for linear dynamics when optimized via advanced fine-tuning methods such as Direct Preference Optimization (DPO) using a tailored loss function.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.