Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

FedEFC: Federated Learning Using Enhanced Forward Correction Against Noisy Labels (2504.05615v1)

Published 8 Apr 2025 in cs.LG and cs.AI

Abstract: Federated Learning (FL) is a powerful framework for privacy-preserving distributed learning. It enables multiple clients to collaboratively train a global model without sharing raw data. However, handling noisy labels in FL remains a major challenge due to heterogeneous data distributions and communication constraints, which can severely degrade model performance. To address this issue, we propose FedEFC, a novel method designed to tackle the impact of noisy labels in FL. FedEFC mitigates this issue through two key techniques: (1) prestopping, which prevents overfitting to mislabeled data by dynamically halting training at an optimal point, and (2) loss correction, which adjusts model updates to account for label noise. In particular, we develop an effective loss correction tailored to the unique challenges of FL, including data heterogeneity and decentralized training. Furthermore, we provide a theoretical analysis, leveraging the composite proper loss property, to demonstrate that the FL objective function under noisy label distributions can be aligned with the clean label distribution. Extensive experimental results validate the effectiveness of our approach, showing that it consistently outperforms existing FL techniques in mitigating the impact of noisy labels, particularly under heterogeneous data settings (e.g., achieving up to 41.64% relative performance improvement over the existing loss correction method).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube