Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

ACE-RLHF: Automated Code Evaluation and Socratic Feedback Generation Tool using Large Language Models and Reinforcement Learning with Human Feedback (2504.04657v1)

Published 7 Apr 2025 in cs.LG

Abstract: Automated Program Repair tools are developed for generating feedback and suggesting a repair method for erroneous code. State of the art (SOTA) code repair methods rely on data-driven approaches and often fail to deliver solution for complicated programming questions. To interpret the natural language of unprecedented programming problems, using LLMs for code-feedback generation is crucial. LLMs generate more comprehensible feedback than compiler-generated error messages, and Reinforcement Learning with Human Feedback (RLHF) further enhances quality by integrating human-in-the-loop which helps novice students to lean programming from scratch interactively. We are applying RLHF fine-tuning technique for an expected Socratic response such as a question with hint to solve the programming issue. We are proposing code feedback generation tool by fine-tuning LLM with RLHF, Automated Code Evaluation with RLHF (ACE-RLHF), combining two open-source LLM models with two different SOTA optimization techniques. The quality of feedback is evaluated on two benchmark datasets containing basic and competition-level programming questions where the later is proposed by us. We achieved 2-5% higher accuracy than RL-free SOTA techniques using Llama-3-7B-Proximal-policy optimization in automated evaluation and similar or slightly higher accuracy compared to reward model-free RL with AI Feedback (RLAIF). We achieved almost 40% higher accuracy with GPT-3.5 Best-of-n optimization while performing manual evaluation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube