Papers
Topics
Authors
Recent
2000 character limit reached

AutoPDL: Automatic Prompt Optimization for LLM Agents (2504.04365v2)

Published 6 Apr 2025 in cs.LG, cs.AI, and cs.PL

Abstract: The performance of LLMs depends on how they are prompted, with choices spanning both the high-level prompting pattern (e.g., Zero-Shot, CoT, ReAct, ReWOO) and the specific prompt content (instructions and few-shot demonstrations). Manually tuning this combination is tedious, error-prone, and specific to a given LLM and task. Therefore, this paper proposes AutoPDL, an automated approach to discovering good LLM agent configurations. Our approach frames this as a structured AutoML problem over a combinatorial space of agentic and non-agentic prompting patterns and demonstrations, using successive halving to efficiently navigate this space. We introduce a library implementing common prompting patterns using the PDL prompt programming language. AutoPDL solutions are human-readable, editable, and executable PDL programs that use this library. This approach also enables source-to-source optimization, allowing human-in-the-loop refinement and reuse. Evaluations across three tasks and seven LLMs (ranging from 3B to 70B parameters) show consistent accuracy gains ($9.06\pm15.3$ percentage points), up to 68.9pp, and reveal that selected prompting strategies vary across models and tasks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.