Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Foundation Models for Environmental Science: A Survey of Emerging Frontiers (2504.04280v1)

Published 5 Apr 2025 in cs.LG and q-bio.QM

Abstract: Modeling environmental ecosystems is essential for effective resource management, sustainable development, and understanding complex ecological processes. However, traditional data-driven methods face challenges in capturing inherently complex and interconnected processes and are further constrained by limited observational data in many environmental applications. Foundation models, which leverages large-scale pre-training and universal representations of complex and heterogeneous data, offer transformative opportunities for capturing spatiotemporal dynamics and dependencies in environmental processes, and facilitate adaptation to a broad range of applications. This survey presents a comprehensive overview of foundation model applications in environmental science, highlighting advancements in common environmental use cases including forward prediction, data generation, data assimilation, downscaling, inverse modeling, model ensembling, and decision-making across domains. We also detail the process of developing these models, covering data collection, architecture design, training, tuning, and evaluation. Through discussions on these emerging methods as well as their future opportunities, we aim to promote interdisciplinary collaboration that accelerates advancements in machine learning for driving scientific discovery in addressing critical environmental challenges.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube