Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Effects of Grouped Structural Global Pruning of Vision Transformers on Domain Generalisation (2504.04196v1)

Published 5 Apr 2025 in cs.CV and cs.LG

Abstract: With the growing sizes of AI models like LLMs and vision transformers, deploying them on devices with limited computational resources is a significant challenge particularly when addressing domain generalisation (DG) tasks. This paper introduces a novel grouped structural pruning method for pre-trained vision transformers (ViT, BeiT, and DeiT), evaluated on the PACS and Office-Home DG benchmarks. Our method uses dependency graph analysis to identify and remove redundant groups of neurons, weights, filters, or attention heads within transformers, using a range of selection metrics. Grouped structural pruning is applied at pruning ratios of 50\%, 75\% and 95\% and the models are then fine-tuned on selected distributions from DG benchmarks to evaluate their overall performance in DG tasks. Results show significant improvements in inference speed and fine-tuning time with minimal trade-offs in accuracy and DG task performance. For instance, on the PACS benchmark, pruning ViT, BeiT, and DeiT models by 50\% using the Hessian metric resulted in accuracy drops of only -2.94\%, -1.42\%, and -1.72\%, respectively, while achieving speed boosts of 2.5x, 1.81x, and 2.15x. These findings demonstrate the effectiveness of our approach in balancing model efficiency with domain generalisation performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.