Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Towards Principled Learning for Re-ranking in Recommender Systems (2504.04188v1)

Published 5 Apr 2025 in cs.IR and cs.LG

Abstract: As the final stage of recommender systems, re-ranking presents ordered item lists to users that best match their interests. It plays such a critical role and has become a trending research topic with much attention from both academia and industry. Recent advances of re-ranking are focused on attentive listwise modeling of interactions and mutual influences among items to be re-ranked. However, principles to guide the learning process of a re-ranker, and to measure the quality of the output of the re-ranker, have been always missing. In this paper, we study such principles to learn a good re-ranker. Two principles are proposed, including convergence consistency and adversarial consistency. These two principles can be applied in the learning of a generic re-ranker and improve its performance. We validate such a finding by various baseline methods over different datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube