Papers
Topics
Authors
Recent
2000 character limit reached

Autonomous and Self-Adapting System for Synthetic Media Detection and Attribution (2504.03615v1)

Published 4 Apr 2025 in cs.CV and cs.AI

Abstract: Rapid advances in generative AI have enabled the creation of highly realistic synthetic images, which, while beneficial in many domains, also pose serious risks in terms of disinformation, fraud, and other malicious applications. Current synthetic image identification systems are typically static, relying on feature representations learned from known generators; as new generative models emerge, these systems suffer from severe performance degradation. In this paper, we introduce the concept of an autonomous self-adaptive synthetic media identification system -- one that not only detects synthetic images and attributes them to known sources but also autonomously identifies and incorporates novel generators without human intervention. Our approach leverages an open-set identification strategy with an evolvable embedding space that distinguishes between known and unknown sources. By employing an unsupervised clustering method to aggregate unknown samples into high-confidence clusters and continuously refining its decision boundaries, our system maintains robust detection and attribution performance even as the generative landscape evolves. Extensive experiments demonstrate that our method significantly outperforms existing approaches, marking a crucial step toward universal, adaptable forensic systems in the era of rapidly advancing generative models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.