Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Pyramid-based Mamba Multi-class Unsupervised Anomaly Detection (2504.03442v1)

Published 4 Apr 2025 in cs.CV

Abstract: Recent advances in convolutional neural networks (CNNs) and transformer-based methods have improved anomaly detection and localization, but challenges persist in precisely localizing small anomalies. While CNNs face limitations in capturing long-range dependencies, transformer architectures often suffer from substantial computational overheads. We introduce a state space model (SSM)-based Pyramidal Scanning Strategy (PSS) for multi-class anomaly detection and localization--a novel approach designed to address the challenge of small anomaly localization. Our method captures fine-grained details at multiple scales by integrating the PSS with a pre-trained encoder for multi-scale feature extraction and a feature-level synthetic anomaly generator. An improvement of $+1\%$ AP for multi-class anomaly localization and a +$1\%$ increase in AU-PRO on MVTec benchmark demonstrate our method's superiority in precise anomaly localization across diverse industrial scenarios. The code is available at https://github.com/iqbalmlpuniud/Pyramid Mamba.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.