Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Noise-Aware Generalization: Robustness to In-Domain Noise and Out-of-Domain Generalization (2504.02996v1)

Published 3 Apr 2025 in cs.LG and cs.CV

Abstract: Multi-source Domain Generalization (DG) aims to improve model robustness to new distributions. However, DG methods often overlook the effect of label noise, which can confuse a model during training, reducing performance. Limited prior work has analyzed DG method's noise-robustness, typically focused on an analysis of existing methods rather than new solutions. In this paper, we investigate this underexplored space, where models are evaluated under both distribution shifts and label noise, which we refer to as Noise-Aware Generalization (NAG). A natural solution to address label noise would be to combine a Learning with Noisy Labels (LNL) method with those from DG. Many LNL methods aim to detect distribution shifts in a class's samples, i.e., they assume that distribution shifts often correspond to label noise. However, in NAG distribution shifts can be due to label noise or domain shifts, breaking the assumptions used by LNL methods. A naive solution is to make a similar assumption made by many DG methods, where we presume to have domain labels during training, enabling us to isolate the two types of shifts. However, this ignores valuable cross-domain information. Specifically, our proposed DL4ND approach improves noise detection by taking advantage of the observation that noisy samples that may appear indistinguishable within a single domain often show greater variation when compared across domains. Experiments show that DL4ND significantly improves performance across four diverse datasets, offering a promising direction for tackling NAG.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube