Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Automated Survey Collection with LLM-based Conversational Agents (2504.02891v1)

Published 2 Apr 2025 in cs.CL and cs.AI

Abstract: Objective: Traditional phone-based surveys are among the most accessible and widely used methods to collect biomedical and healthcare data, however, they are often costly, labor intensive, and difficult to scale effectively. To overcome these limitations, we propose an end-to-end survey collection framework driven by conversational LLMs. Materials and Methods: Our framework consists of a researcher responsible for designing the survey and recruiting participants, a conversational phone agent powered by an LLM that calls participants and administers the survey, a second LLM (GPT-4o) that analyzes the conversation transcripts generated during the surveys, and a database for storing and organizing the results. To test our framework, we recruited 8 participants consisting of 5 native and 3 non-native english speakers and administered 40 surveys. We evaluated the correctness of LLM-generated conversation transcripts, accuracy of survey responses inferred by GPT-4o and overall participant experience. Results: Survey responses were successfully extracted by GPT-4o from conversation transcripts with an average accuracy of 98% despite transcripts exhibiting an average per-line word error rate of 7.7%. While participants noted occasional errors made by the conversational LLM agent, they reported that the agent effectively conveyed the purpose of the survey, demonstrated good comprehension, and maintained an engaging interaction. Conclusions: Our study highlights the potential of LLM agents in conducting and analyzing phone surveys for healthcare applications. By reducing the workload on human interviewers and offering a scalable solution, this approach paves the way for real-world, end-to-end AI-powered phone survey collection systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: