Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Robust AI-Synthesized Image Detection via Multi-feature Frequency-aware Learning (2504.02879v1)

Published 2 Apr 2025 in cs.GR

Abstract: The rapid progression of generative AI (GenAI) technologies has heightened concerns regarding the misuse of AI-generated imagery. To address this issue, robust detection methods have emerged as particularly compelling, especially in challenging conditions where the targeted GenAI models are out-of-distribution or the generated images have been subjected to perturbations during transmission. This paper introduces a multi-feature fusion framework designed to enhance spatial forensic feature representations with incorporating three complementary components, namely noise correlation analysis, image gradient information, and pretrained vision encoder knowledge, using a cross-source attention mechanism. Furthermore, to identify spectral abnormality in synthetic images, we propose a frequency-aware architecture that employs the Frequency-Adaptive Dilated Convolution, enabling the joint modeling of spatial and spectral features while maintaining low computational complexity. Our framework exhibits exceptional generalization performance across fourteen diverse GenAI systems, including text-to-image diffusion models, autoregressive approaches, and post-processed deepfake methods. Notably, it achieves significantly higher mean accuracy in cross-model detection tasks when compared to existing state-of-the-art techniques. Additionally, the proposed method demonstrates resilience against various types of real-world image noise perturbations such as compression and blurring. Extensive ablation studies further corroborate the synergistic benefits of fusing multi-model forensic features with frequency-aware learning, underscoring the efficacy of our approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: