Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Towards Green AI-Native Networks: Evaluation of Neural Circuit Policy for Estimating Energy Consumption of Base Stations (2504.02781v1)

Published 3 Apr 2025 in cs.LG, cs.AI, cs.NE, and eess.SP

Abstract: Optimization of radio hardware and AI-based network management software yield significant energy savings in radio access networks. The execution of underlying Machine Learning (ML) models, which enable energy savings through recommended actions, may require additional compute and energy, highlighting the opportunity to explore and adopt accurate and energy-efficient ML technologies. This work evaluates the novel use of sparsely structured Neural Circuit Policies (NCPs) in a use case to estimate the energy consumption of base stations. Sparsity in ML models yields reduced memory, computation and energy demand, hence facilitating a low-cost and scalable solution. We also evaluate the generalization capability of NCPs in comparison to traditional and widely used ML models such as Long Short Term Memory (LSTM), via quantifying their sensitivity to varying model hyper-parameters (HPs). NCPs demonstrated a clear reduction in computational overhead and energy consumption. Moreover, results indicated that the NCPs are robust to varying HPs such as number of epochs and neurons in each layer, making them a suitable option to ease model management and to reduce energy consumption in Machine Learning Operations (MLOps) in telecommunications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube