Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mind the Gap? Not for SVP Hardness under ETH! (2504.02695v1)

Published 3 Apr 2025 in cs.CC, cs.CR, and cs.DS

Abstract: We prove new hardness results for fundamental lattice problems under the Exponential Time Hypothesis (ETH). Building on a recent breakthrough by Bitansky et al. [BHIRW24], who gave a polynomial-time reduction from $\mathsf{3SAT}$ to the (gap) $\mathsf{MAXLIN}$ problem-a class of CSPs with linear equations over finite fields-we derive ETH-hardness for several lattice problems. First, we show that for any $p \in [1, \infty)$, there exists an explicit constant $\gamma > 1$ such that $\mathsf{CVP}{p,\gamma}$ (the $\ell_p$-norm approximate Closest Vector Problem) does not admit a $2{o(n)}$-time algorithm unless ETH is false. Our reduction is deterministic and proceeds via a direct reduction from (gap) $\mathsf{MAXLIN}$ to $\mathsf{CVP}{p,\gamma}$. Next, we prove a randomized ETH-hardness result for $\mathsf{SVP}{p,\gamma}$ (the $\ell_p$-norm approximate Shortest Vector Problem) for all $p > 2$. This result relies on a novel property of the integer lattice $\mathbb{Z}n$ in the $\ell_p$ norm and a randomized reduction from $\mathsf{CVP}{p,\gamma}$ to $\mathsf{SVP}{p,\gamma'}$. Finally, we improve over prior reductions from $\mathsf{3SAT}$ to $\mathsf{BDD}{p, \alpha}$ (the Bounded Distance Decoding problem), yielding better ETH-hardness results for $\mathsf{BDD}_{p, \alpha}$ for any $p \in [1, \infty)$ and $\alpha > \alpha_p{\ddagger}$, where $\alpha_p{\ddagger}$ is an explicit threshold depending on $p$. We additionally observe that prior work implies ETH hardness for the gap minimum distance problem ($\gamma$-$\mathsf{MDP}$) in codes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube