Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Integrating Human Knowledge Through Action Masking in Reinforcement Learning for Operations Research (2504.02662v1)

Published 3 Apr 2025 in cs.LG and math.OC

Abstract: Reinforcement learning (RL) provides a powerful method to address problems in operations research. However, its real-world application often fails due to a lack of user acceptance and trust. A possible remedy is to provide managers with the possibility of altering the RL policy by incorporating human expert knowledge. In this study, we analyze the benefits and caveats of including human knowledge via action masking. While action masking has so far been used to exclude invalid actions, its ability to integrate human expertise remains underexplored. Human knowledge is often encapsulated in heuristics, which suggest reasonable, near-optimal actions in certain situations. Enforcing such actions should hence increase trust among the human workforce to rely on the model's decisions. Yet, a strict enforcement of heuristic actions may also restrict the policy from exploring superior actions, thereby leading to overall lower performance. We analyze the effects of action masking based on three problems with different characteristics, namely, paint shop scheduling, peak load management, and inventory management. Our findings demonstrate that incorporating human knowledge through action masking can achieve substantial improvements over policies trained without action masking. In addition, we find that action masking is crucial for learning effective policies in constrained action spaces, where certain actions can only be performed a limited number of times. Finally, we highlight the potential for suboptimal outcomes when action masks are overly restrictive.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube