Papers
Topics
Authors
Recent
2000 character limit reached

A Memory-Augmented LLM-Driven Method for Autonomous Merging of 3D Printing Work Orders (2504.02509v1)

Published 3 Apr 2025 in cs.AI and cs.RO

Abstract: With the rapid development of 3D printing, the demand for personalized and customized production on the manufacturing line is steadily increasing. Efficient merging of printing workpieces can significantly enhance the processing efficiency of the production line. Addressing the challenge, a LLM-driven method is established in this paper for the autonomous merging of 3D printing work orders, integrated with a memory-augmented learning strategy. In industrial scenarios, both device and order features are modeled into LLM-readable natural language prompt templates, and develop an order-device matching tool along with a merging interference checking module. By incorporating a self-memory learning strategy, an intelligent agent for autonomous order merging is constructed, resulting in improved accuracy and precision in order allocation. The proposed method effectively leverages the strengths of LLMs in industrial applications while reducing hallucination.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.