Papers
Topics
Authors
Recent
2000 character limit reached

On the twin-width of near-regular graphs (2504.02342v1)

Published 3 Apr 2025 in math.CO and cs.DS

Abstract: Twin-width is a recently introduced graph parameter based on the repeated contraction of near-twins. It has shown remarkable utility in algorithmic and structural graph theory, as well as in finite model theory -- particularly since first-order model checking is fixed-parameter tractable when a witness certifying small twin-width is provided. However, the behavior of twin-width in specific graph classes, particularly cubic graphs, remains poorly understood. While cubic graphs are known to have unbounded twin-width, no explicit cubic graph of twin-width greater than 4 is known. This paper explores this phenomenon in regular and near-regular graph classes. We show that extremal graphs of bounded degree and high twin-width are asymmetric, partly explaining their elusiveness. Additionally, we establish bounds for circulant and d-degenerate graphs, and examine strongly regular graphs, which exhibit similar behavior to cubic graphs. Our results include determining the twin-width of Johnson graphs over 2-sets, and cyclic Latin square graphs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.