Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

A direct algebraic proof for the non-positivity of Liouvillian eigenvalues in Markovian quantum dynamics (2504.02256v1)

Published 3 Apr 2025 in quant-ph

Abstract: Markovian open quantum systems are described by the Lindblad master equation $\partial_t\rho =\mathcal{L}(\rho)$, where $\rho$ denotes the system's density operator and $\mathcal{L}$ the Liouville super-operator, which is also known as the Liouvillian. For systems with a finite-dimensional Hilbert space, it is a fundamental property of the Liouvillian, that the real-parts of all its eigenvalues are non-positive which, in physical terms, corresponds to the stability of the system. The usual argument for this property is indirect, using that $\mathcal{L}$ generates a quantum channel and that quantum channels are contractive. We provide a direct algebraic proof based on the Lindblad form of Liouvillians.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.