HQCC: A Hybrid Quantum-Classical Classifier with Adaptive Structure (2504.02167v1)
Abstract: Parameterized Quantum Circuits (PQCs) with fixed structures severely degrade the performance of Quantum Machine Learning (QML). To address this, a Hybrid Quantum-Classical Classifier (HQCC) is proposed. It opens a practical way to advance QML in the Noisy Intermediate-Scale Quantum (NISQ) era by adaptively optimizing the PQC through a Long Short-Term Memory (LSTM) driven dynamic circuit generator, utilizing a local quantum filter for scalable feature extraction, and exploiting architectural plasticity to balance the entanglement depth and noise robustness. We realize the HQCC on the TensorCircuit platform and run simulations on the MNIST and Fashion MNIST datasets, achieving up to 97.12\% accuracy on MNIST and outperforming several alternative methods.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.