Papers
Topics
Authors
Recent
2000 character limit reached

From Smør-re-brød to Subwords: Training LLMs on Danish, One Morpheme at a Time (2504.01540v1)

Published 2 Apr 2025 in cs.CL

Abstract: The best performing transformer-based LLMs use subword tokenization techniques, such as Byte-Pair-Encoding (BPE). However, these approaches often overlook linguistic principles, such as morphological segmentation, which we believe is fundamental for understanding language-specific word structure. In this study, we leverage an annotated Danish morphological dataset to train a semisupervised model for morphological segmentation, enabling the development of tokenizers optimized for Danish morphology. We evaluate four distinct tokenizers, including two custom morphological tokenizers, by analyzing their performance in morphologically segmenting Danish words. Additionally, we train two generative transformer models, \textit{CerebrasGPT-111M} and \textit{LLaMA-3.2 1B}, using these tokenizers and evaluate their downstream performance. Our findings reveal that our custom-developed tokenizers substantially enhance morphological segmentation, achieving an F1 score of 58.84, compared to 39.28 achieved by a Danish BPE tokenizer. In downstream tasks, models trained with our morphological tokenizers outperform those using BPE tokenizers across different evaluation metrics. These results highlight that incorporating Danish morphological segmentation strategies into tokenizers leads to improved performance in generative transformer models on Danish language

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.