Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Prompt-Reverse Inconsistency: LLM Self-Inconsistency Beyond Generative Randomness and Prompt Paraphrasing (2504.01282v1)

Published 2 Apr 2025 in cs.CL

Abstract: While the inconsistency of LLMs is not a novel topic, prior research has predominantly addressed two types of generative inconsistencies: i) Randomness Inconsistency: running the same LLM multiple trials, yielding varying responses; ii) Paraphrase Inconsistency: paraphrased prompts result in different responses from the same LLM. Randomness Inconsistency arises from the inherent randomness due to stochastic sampling in generative models, while Paraphrase Inconsistency is a consequence of the language modeling objectives, where paraphrased prompts alter the distribution of vocabulary logits. This research discovers Prompt-Reverse Inconsistency (PRIN), a new form of LLM self-inconsistency: given a question and a couple of LLM-generated answer candidates, the LLM often has conflicting responses when prompted "Which are correct answers?" and "Which are incorrect answers?". PRIN poses a big concern as it undermines the credibility of LLM-as-a-judge, and suggests a challenge for LLMs to adhere to basic logical rules. We conduct a series of experiments to investigate PRIN, examining the extent of PRIN across different LLMs, methods to mitigate it, potential applications, and its relationship with Randomness Inconsistency and Paraphrase Inconsistency. As the first study to explore PRIN, our findings offer valuable insights into the inner workings of LLMs and contribute to advancing trustworthy AI.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube